

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Change Log

As of April 2021, we use major version numbers (e.g. v2) to reflect backward incompatible changes to the workflow that likely require you to update your Nextstrain installation.
We also use this change log to document new features that maintain backward compatibility, indicating these features by the date they were added.

v7 (27 May 2021)

For more details about this release, see [the configuration reference for the new “sanitize metadata” parameters](https://nextstrain.github.io/ncov/configuration.html#sanitize_metadata) and [the corresponding pull request](https://github.com/nextstrain/ncov/pull/640).

Major changes

	Deduplicate metadata and sequences from each inputs dataset at the beginning of the workflow.

Features

	Support full GISAID metadata and sequences from the “Download packages” interface by converting this default format into Nextstrain-compatible metadata and sequences.

	Support reading metadata and sequences directly from GISAID’s tar archives. For example, you can now define inputs as metadata: data/ncov_north-america.tar.gz and sequences: data/ncov_north-america.tar.gz to decompress and read the corresponding data from the archive.

New features since last version update

	25 May 2021: Support custom Auspice JSON prefixes with a new configuration parameter, auspice_json_prefix. [See the configuration reference for more details](https://nextstrain.github.io/ncov/configuration.html#auspice_json_prefix). ([#643](https://github.com/nextstrain/ncov/pull/643))

v6 (20 May 2021)

Major changes

	Fix bug in precedence of input data such that duplicate sequence and metadata records are resolved by always preferring the record from the last inputs dataset. Thank you to @ttung for catching/patching this! If you have depended on the previous behavior where the sequence from first input dataset was preferred, you will need to change the order of your inputs such that the preferred input appears last in the list. ([#639](https://github.com/nextstrain/ncov/pull/639)).

New features since last version update

	19 May 2021: Compress metadata, sequence indices, and early intermediate sequences (aligned, masked, filtered, combined for subsampling, and subsampled files) to save disk space. ([#636](https://github.com/nextstrain/ncov/pull/636))

	12 May 2021: Include S1 mutations and nextalign-based ancestral amino acid mutations in Auspice JSONs by default instead of requiring the now-unnecessary use_nextalign configuration parameter. ([#630](https://github.com/nextstrain/ncov/pull/630))

	12 May 2021: [Document all available workflow configuration parameters](https://nextstrain.github.io/ncov/configuration). ([#633](https://github.com/nextstrain/ncov/pull/633))

v5 (7 May 2021)

[See the corresponding pull request](https://github.com/nextstrain/ncov/pull/615) for more details about this release.

Major changes

	Drop support for old sequence/metadata inputs. This change removes support for the config[“sequences”] and config[“metadata”] starting points for the workflow in favor of the more flexible [config[“inputs”] format](https://nextstrain.github.io/ncov/configuration.html#inputs).

	Use nextalign for alignment instead of mafft. This change completely removes support for mafft in favor of nextalign. Future versions may reinstate mafft support as part of augur align updates.

Minor changes

	Drop unused haplotype status rule and script

	Remove unused nucleotide mutation frequencies rule

	Use augur distance for mutation counts instead of a custom script in the ncov repository. [Recent improvements to augur distance in v12.0.0](https://github.com/nextstrain/augur/blob/master/CHANGES.md#1200-13-april-2021) enable this change by properly accounting for insertion/deletion events.

v4 (5 May 2021)

[See the corresponding pull request](https://github.com/nextstrain/ncov/pull/605) for more details about changes in this release.

Major changes

	Change the default build name from “global” to “default-build” and use a default subsampling scheme that selects all input sequences

	Warn about duplicate sequences found when merging sequences from multiple inputs instead of throwing an error (set combine_sequences_for_subsampling: warn_about_duplicates: false in your configuration file to revert this behavior)

Features

	Define a new subsampling scheme named all that selects all input sequences

	Add a new top-level configuration parameter default_build_name to allow overriding new default name of “default-build”

	Support compressed sequence inputs for alignment with mafft and nextalign (requires mafft upgrade)

	Sanitize strain names in sequences and metadata from different sources (e.g., hCoV-19/ from GISAID or SARS-CoV-2/ from GenBank, etc.)

New features since last version update

	20 April 2021: Surface emerging lineage as a colorby. This replaces the rather stale color by “Emerging Clade” with a new color by “Emerging Lineage”. This focuses on PANGO lineages that are of interest triangulated by [CoVariants](https://covariants.org/), [PANGO](https://cov-lineages.org/) international lineage reports, [CDC](https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html) VUIs and VOCs and [PHE](https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/975742/Variants_of_Concern_VOC_Technical_Briefing_8_England.pdf) VUIs and VOCs. The intention is for the listing at emerging_lineages.tsv to be updated frequently with new lineages added and no longer interesting lineages dropped. [#609](https://github.com/nextstrain/ncov/pull/609)

	12 April 2021: Calculate current clade frequency and logistic growth rate across nodes in the phylogeny. This produces a new logistic_growth.json file and uses this file to add a coloring the final Auspice JSON. Implementation choices are discussed in PR [#595](https://github.com/nextstrain/ncov/pull/595).

	12 April 2021: Annotate Pangolin lineages per build in a pangolineages.json file and final Auspice JSON by adding run_pangolin: true to the top-level workflow config (builds.yaml). Note: this annotation only works when running the workflow with Snakemake’s `–use-conda` flag or if your environment has [Pangolin installed](https://github.com/cov-lineages/pangolin). [#593](https://github.com/nextstrain/ncov/pull/593)

v3 (12 April 2021)

	Use Augur 11.2.0’s metadata-only output arguments to aggregate subsampled sequences and metadata [#592][]

	Use Augur 11.3.0’s io.py module to combine and deduplicate uncompressed or compressed sequences when handling multiple input datasets [#592][]

[#592]: https://github.com/nextstrain/ncov/pull/592

v2 (9 April 2021)

This release reflects the state of the workflow when we instituted our workflow versioning system.

July 2020 Update

In order to make our repository more accessible for first-time users, and those who want to create their own customized build, we made a number of changes in July 2020.
Here, we outline those changes, and also list ‘breaking changes’ that may effect advanced users who were already running their own builds.

You can check the lists below to see if there’s any action you could take to make updating to the latest version of this repository is smooth!

Summary of changes

The goal of this release is to make it easier for new users to get their own ncov build up and running. This consists of a new, extensive tutorial hosted on github pages; a simplified repository structure; and more didactic file names.

Summary of breaking changes:
- All nextstrain-specific files now live under nextstrain_profiles
- config is now named defaults
- envs, rules and schemas now live under workflow

Additions and updates
- README is updated
- Adds in-depth tutorial to docs/ and accompanying github pages setup files
- data/ now contains example data that should remain packaged with the repository
- narratives/ now contains only a template_narrative.md for new users (not to worry – all finished Situation Reports are still hosted over in the nextstrain/narratives repo)
- my_profiles now contains extensive example (formerly king-county) and example_advanced_customization (formerly swiss) profiles

File name changes
- The main config.yaml file is now more precisely labeled as parameters.yaml
- reference.gb > reference_seq.gb
- ordering.tsv > color_ordering.tsv
- config > defaults, with nextstrain-specific files (e.g., description.md) moved to nextstrain_profiles/nextstrain/
- nextstrain-specific profiles labeled with nextstrain_*

Structural changes
To improve repo clarity and approachability for new users, the following files have been reorganized.
- Workflow-related files now live in a workflow directory, rather than the top level

	envs > workflow/envs

	schemas > workflow/schemas

	rules > workflow/snakemake_rules

	Nextstrain-specific profiles now live under nextstrain_profiles

(Reiterated from last section because they’re important :)
- config is now defaults, with nextstrain-specific files (e.g., description.md) moved to nextstrain_profiles/nextstrain/
- config.yaml is now parameters.yaml

Breaking Changes

If you’ve got custom builds running and regularly pull from the repository, you should check here to see if any of the changes you’ve made might make the merge harder.
Usually, just copying and renaming folders and/or files is enough to avoid too many merge conflicts!

First, you should check the file locations that have changed, above.
If you reference any of these files specifically in your pipelines or profile, be sure to update those links!

Be sure to also check any links to files that were previously in profiles.
For example, if you were referencing the cluster information in profiles/nextstrain-scicore/cluster.json for example) - we’ve now got two profiles folders - you’d find nextstrain-scicore in the nextstrain_profiles folder now.

If you modified the swiss, default, or king-county profiles, this may cause a merge conflict, as these folders have been renamed.
To keep your builds as they are, we recommend copying these folders, and then after the merge, restoring the name you prefer.

We now have a data folder which comes with the repository and contains example build data.
If you had previously created a data folder, this may cause a merge conflict - usually this can be easily resolved.

Developer Changes

For those who help run and maintain the Nextstrain.org builds, there’s a few changes that might be different from what you’re used to.

Just focusing on the files mostly accessed by the ‘build shepherds,’ here’s what’s good to know:
- The config folder is now defaults
- orderings.tsv is now color_orderings.tsv
- rules/nextstrain_exports.smk (the rules that do the ‘finalizing’ of the builds) isnow workflow/snakemake_rules/export_for_nextstrain.smk

The ‘finishing builds’ commands are also slightly different because the profiles have moved - they’ll look familiar though!
You can already find these changed commands in the export_for_nextstrain.smk file, but here they are as well:

`
To update ordering/lat_longs after AWS download:
snakemake --touch --forceall --profile nextstrain_profiles/nextstrain
snakemake --profile nextstrain_profiles/nextstrain clean_export_regions
snakemake --profile nextstrain_profiles/nextstrain export_all_regions
When done adjusting lat-longs & orders, remember to run
snakemake --profile nextstrain_profiles/nextstrain all_regions
to produce the final Auspice files!
`

 # Configuration parameters for Nextstrain SARS-CoV-2 workflow

S3_DST_BUCKET
* type: string
* description: S3 bucket to store files from the upload rule in export_for_nextstrain.smk. Currently only available to Nextstrain builds.

S3_DST_COMPRESSION
* type: string
* description: Compression format to use for files uploaded to S3 by the upload rule.
* examples

	xz

	gz

S3_DST_ORIGINS
* type: array
* items:

	type: string

	description: List of input names (i.e., “origins”) for which intermediate files should be uploaded to S3 by the upload rule.

	
	examples
	
	[“gisaid”]

active_builds
* type: string
* description: Comma-delimited list of names of builds to run (allowing a subset of all builds to be specified).
* examples

	global

	global,africa,north-america

ancestral
* type: object
* description: Configuration of augur ancestral command that infers ancestral sequences based on a tree.

inference
* type: string
* description: Calculate joint or marginal maximum likelihood ancestral sequence states
* examples

	joint

	marginal

build_sizes
* type: object
* description: Number of strains to include in a build by name. Experimental.
* examples

	standard: 4000

builds
* type: object
* description: Named builds to produce by the workflow from the given inputs. Builds are indexed by name and include any number of build attributes that can be used to control subsampling, Auspice configuration, and more.
* examples:
```yaml
builds:



	global:
	region: global
subsampling_scheme: global



	washington:
	region: North America
country: USA
division: Washington
subsampling_scheme: all








```
* required:

	region (required to adjust regional metadata)

Builds support any named attributes that can be referenced by subsampling schemes. Builds also support the following specific attributes.

auspice_config
* type: string
* description: Path to a build-specific Auspice configuration JSON.

colors
* type: string
* description: Path to a build-specific color map to use in Auspice.

description
* type: string
* description: Path to a build-specific Markdown file to use as a description in Auspice.

region
* type: string
* description: Name of the region the corresponding build belongs to (based on standard values in the region metadata field).

subclades
* type: string
* description: Path to a build-specific [Augur clade definition file](https://docs.nextstrain.org/en/latest/guides/bioinformatics/defining-clades.html#make-a-tsv-file-containing-your-clade-mutations) to combine with the curated clades defined by files: clades.

subsampling_scheme
* type: string
* description: Name of the subsampling scheme defined in subsampling to use for the current build.

title
* type: string
* description: Build-specific title to provide to augur export and display as the title of the analysis in Auspice.

combine_sequences_for_subsampling
* type: object
* description: Configuration of logic to combine sequences from multiple input files into a single file for subsampling.

warn_about_duplicates
* type: boolean
* description: Warn users about duplicate sequences identified when merging input sequences and print a list of duplicates to standard out (and log files). Set this to false to get an error and stop the workflow when duplicates are detected.
* default: true

conda_environment
* type: string
* description: Path to a Conda environment file to use for the workflow when the workflow is run with [Snakemake’s –use-conda flag](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html#integrated-package-management).
* default: workflow/envs/nextstrain.yaml

custom_rules
* type: array
* description: List of paths to Snakemake files to include in the workflow, allowing users to inject their own rules at the beginning or the end of the workflow (e.g., to pre-process data prior to the workflow, annotate outputs from the workflow, etc.).
* examples

	- workflow/snakemake_rules/export_for_nextstrain.smk

	- nextstrain_profiles/nextstrain/subsampling_ranges.smk

default_build_name
* type: string
* description: Name to assign the default build when a user has not defined any other entries in the builds config.
* default: default-build

exposure
* type: object
* description: Build-specific exposure history inference.

default
* type: object
* description: Default exposure history inference at the country level.

files
* type: object
* description: Additional files used to configure tools used by the workflow (e.g., alignment references, names of strains to exclude during filtering, etc.).

include
* type: string
* description: Path to a file with list of strains (one name per line) to include in the analysis regardless of priorities or subsampling during filtering.
* default: defaults/include.txt

exclude
* type: string
* description: Path to a file with list of strains (one name per line) to exclude from the analysis.
* default: defaults/exclude.txt

reference
* type: string
* description: Path to a GenBank-formatted sequence to use for multiple sequence alignment with augur align
* default: defaults/reference_seq.gb

alignment_reference
* type: string
* description: Path to a FASTA-formatted sequence to use for alignment with nextalign or mafft’s reference-based alignment
* default: defaults/reference_seq.fasta

annotation
* type: string
* description: Path to a GFF-formated annotation of gene coordinates (e.g., a “gene map”) for use by nextalign and mutation summaries.
* default: defaults/annotation.gff

outgroup
* type: string
* description: No longer used.
* default: defaults/outgroup.fasta

ordering
* type: string
* description: Path to tab-delimited mapping of metadata attributes (first column) to corresponding values (second column) with rows ordered by the desired appearance in the Nextstrain color legend. This mapping and ordering is manually curated by the Nextstrain team and updates regularly. Along with the color_schemes file, this file is used to generate a build-specific color map for use by Auspice.
* default: defaults/color_ordering.tsv

color_schemes
* type: string
* description: Path to a list of tab-delimited and manually curated categorical color schemes for N total categories where row one defines one color, row two define two colors, and so on. Along with the ordering file, this file is used to generate a build-specific color map for use by Auspice.
* default: defaults/color_schemes.tsv

auspice_config
* type: string
* description: Path to an Auspice configuration JSON file used by augur export.
* default: defaults/auspice_config.json

lat_longs
* type: string
* description: Path to a tab-delimited mapping of geographic scales (e.g., location ,`division`, etc.), geographic names (e.g., King County), and corresponding latitude and longitude values for the given place name. This mapping is manually curated by the Nextstrain team and updates regularly.
* default: defaults/lat_longs.tsv

description
* type: string
* description: Path to a Markdown file containing a default description of each build that will be included in the build’s final Auspice JSON and appear in the build’s display in Auspice. Define a build-specific description with a path to that description file in builds: <build_name> : description: <path_to_build_specific_description>.md.

clades
* type: string
* description: Path to [an Augur clade definition file](https://docs.nextstrain.org/en/latest/guides/bioinformatics/defining-clades.html#make-a-tsv-file-containing-your-clade-mutations) where each row is a tab-delimited mapping of clade name to a gene, site (i.e., position), and alternate allele at that site for the corresponding clade.
* default: defaults/clades.tsv

emerging_lineages
* type: string
* description: Path to [an Augur clade definition file](https://docs.nextstrain.org/en/latest/guides/bioinformatics/defining-clades.html#make-a-tsv-file-containing-your-clade-mutations) for emerging lineages of concern that may be a subset or variation of the lineages defined by the clades parameter or Pangolin lineages.
* default: defaults/emerging_lineages.tsv

filter
* type: object
* description: Filters to apply to strain metadata and sequences prior to subsampling and tree inference. The workflow applies an implicit filter on the maximum collection dates later than today.

min_length
* type: integer
* description: Minimum number of valid nucleotides (A, C, T, or G) for a genome to be included in the analysis by augur filter –min-length.
* default: 27000

exclude_where
* type: string
* description: Conditional tests of metadata columns used to exclude strains from the analysis by augur filter –exclude-where
* default: “division=’USA’”

exclude_ambiguous_dates_by
* type: string
* description: Level date ambiguity used to exclude strains from the analysis by augur filter –exclude-ambiguous-dates-by
* default: any
* examples:

	any

	day

	month

	year

min_date
* type: float or string
* description: Minimum collection date for strains to include in the analysis used by augur filter –min-date. Dates can be numeric floating point values (e.g., 2019.74) or ISO 8601-style strings (e.g., 2019-10-01).
* default: 2019.74

frequencies
min_date
* type: float or string
* description: Earliest date to estimate frequencies for. Dates can be numeric floating point values (e.g., 2019.74) or ISO 8601-style strings (e.g., 2019-10-01).
* default: 2020.0

pivot_interval
* type: integer
* description: Number of units between frequency estimates based on the units defined in the pivot_interval_units parameter. A “pivot” corresponds to a time point when frequencies are estimated.
* default: 1

pivot_interval_units
* type: string
* description: Unit of pivot interval spacing for frequency estimation.
* default: weeks
* examples:

	weeks

	months

narrow_bandwidth
* type: float
* description: Variance of the KDE normal distribution in numeric floating point years (e.g., one month ~= 30 days ~= 0.08 years). This bandwidth value controls the smoothing of frequency estimates with higher values producing smoother estimates.
* default: 0.05

proportion_wide
* type: float
* description: Proportion of a second KDE normal distribution to add to each initial normal distribution already parameterized by the narrow_bandwidth parameter.
* default: 0.0

minimal_frequency
* Unused

stiffness
* Unused

inertia
* Unused

genes
* type: array
* description: A list of genes for which nextalign should generate amino acid sequences during the alignment process. Gene names must match the names provided in the gene map from the annotation parameter.
* default: [“ORF1a”, “ORF1b”, “S”, “ORF3a”, “M”, “N”]

inputs
* type: array
* description: A list of named input datasets to use for the workflow. Input order determines the precedence of genome sequences and metadata such that earliest datasets override later datasets. Each input must define a name, a path to metadata, and a path to sequences at one of many possible starting points. The workflow merged all input metadata and sequences into a single metadata and sequences file prior to subsampling.
* required

	name

	metadata

	sequences or aligned or masked or filtered

	examples:


```yaml
inputs:



	name: example-data
metadata: data/example_metadata.tsv.xz
sequences: data/example_sequences.fasta.xz


	name: prealigned-data
metadata: data/other_metadata.tsv.xz
aligned: data/other_aligned.fasta.xz


	name: prealigned-and-masked-data
metadata: data/other_metadata.tsv.xz
masked: data/other_masked.fasta.xz


	name: prealigned-masked-and-filtered-data
metadata: data/other_metadata.tsv.xz
filtered: data/other_masked.fasta.xz







```

Valid attributes for list entries in inputs are provided below.

name
* type: string
* description: Name of the current dataset. Names cannot contain spaces, as they correspond to files on the file system.
* examples:

	example-data

	gisaid

	washington

	north-america

metadata
* type: string
* description: Path to a local or remote (S3) tab-delimited metadata file supported by Augur. Metadata can be uncompressed or compressed.
* examples:

	data/example_metadata.tsv

	data/example_metadata.tsv.xz

	s3://your-bucket/metadata.tsv.gz

sequences
* type: string
* description: Path to a local or remote (S3) FASTA file with unaligned, unmasked, and unfiltered genome sequences. Sequences can be uncompressed or compressed.
* examples:

	data/example_sequences.fasta

	data/example_sequences.fasta.xz

	s3://your-bucket/sequences.fasta.gz

aligned
* type: string
* description: Path to a local or remote (S3) FASTA file with aligned, unmasked, and unfiltered genome sequences. Sequences can be uncompressed or compressed.
* examples:

	data/aligned.fasta

	data/aligned.fasta.xz

	s3://your-bucket/aligned.fasta.gz

masked
* type: string
* description: Path to a local or remote (S3) FASTA file with aligned, masked, and unfiltered genome sequences. Sequences can be uncompressed or compressed.
* examples:

	data/aligned.fasta

	data/aligned.fasta.xz

	s3://your-bucket/aligned.fasta.gz

filtered
* type: string
* description: Path to a local or remote (S3) FASTA file with aligned, masked, and filtered genome sequences. Sequences can be uncompressed or compressed.
* examples:

	data/aligned.fasta

	data/aligned.fasta.xz

	s3://your-bucket/aligned.fasta.gz

localrules
* type: string
* description: Path to a Snakemake file to include in the workflow. This parameter is redundant with custom_rules and may be deprecated soon.

logistic_growth
* type: object
* description: Parameters for estimation of logistic clade growth based on logit-transformed clade frequencies.
* required:

	delta_pivots

	min_tips

	min_frequency

	max_frequency

delta_pivots
* type: integer
* description: Calculate logistic growth over the last N pivots which corresponds to N times the amount of time represented by the pivot_interval_units in the frequencies configuration.
* default: 6

min_tips
* type: integer
* description: The minimum number of tips a clade must have before its logistic growth is calculated.
* default: 50

min_frequency
* type: float
* description: The minimum current frequency for a clade to have its logistic growth calculated.
* default: 0.000001

max_frequency
* type: float
* description: The maximum current frequency for a clade to have its logistic growth calculated.
* default: 0.95

mask
* type: object
* description: Parameters for masking of invalid or problematic nucleotides in aligned sequences. In addition to the configurable parameters below, the workflow also always masks terminal gaps in the given alignment.
* required:

	mask_from_beginning

	mask_from_end

	mask_sites

mask_from_beginning
* type: integer
* description: Number of bases to mask from the beginning alignment.
* default: 100

mask_from_end
* type: integer
* description: Number of bases to mask from the end alignment.
* default: 50

mask_sites
* type: string
* description: Space-delimited string of 1-based genomic sites to mask
* default: “13402 24389 24390”

partition_sequences
* Unused

reference_node_name
* Unused

refine
* type: object
* description: Parameters for inference of time trees with augur refine.
* required:

	root

	clock_rate

	clock_std_dev

	coalescent

	date_inference

	divergence_unit

	clock_filter_iqd

root
* type: string
* description: Rooting mechanism or strain name(s) whose sequences should be used to root the time tree. Only one or two (space-delimited) strain names are supported.
* default: Wuhan/WH01/2019
* examples:

	best

	least-squares

	min_dev

	oldest

	Wuhan/Hu-1/2019 Wuhan/WH01/2019

clock_rate
* type: float
* description: Fixed clock rate to use for time tree calculations.
* default: 0.0008

clock_std_dev
* type: float
* description: Standard deviation of the fixed clock_rate estimate.
* default: 0.0004

coalescent
* type: float or string
* description: Coalescent timescale in units of inverse clock rate (float), optimized as a scalar (“opt”), or skyline (“skyline”).
* default: skyline
* examples:

	opt

	skyline

date_inference
* type: string
* description: Assign internal nodes to their jointly or marginally most likely dates.
* default: marginal
* examples:

	marginal

	joint

divergence_unit
* type: string
* description: Units in which sequence divergence is reported.
* default: mutations
* examples:

	mutations

	mutations-per-site

clock_filter_iqd
* type: integer
* description: Remove tips that deviate more than this number of interquartile ranges from the root-to-tip by time regression.
* default: 4

keep_polytomies
* type: boolean
* description: Do not attempt to resolve polytomies.
* default: false

no_timetree
* type: boolean
* description: Do not produce a time tree.
* default: false

run_pangolin
* type: boolean
* description: Enable annotation of Pangolin lineages for a given build’s subsampled sequences.
* default: false

deploy_url
* type: string
* description: URL to an S3 bucket where Auspice JSONs should be uploaded by the deploy rule of the Nextstrain workflows. Only valid for Nextstrain builds.

slack_channel
* type: string
* description: Slack channel to notify when Nextstrain builds start, fail, or get deployed. Only valid for Nextstrain builds.

slack_token
* type: string
* description: [Slack authentication token](https://api.slack.com/authentication/token-types) required for the Slack API calls to notify the defined slack_channel. Only valid for Nextstrain builds.

strip_strain_prefixes
* type: array
* description: A list of prefixes to strip from strain names in metadata and sequence records to maintain consistent strain names when analyzing data from multiple sources.
* default: [“hCoV-19/”, “SARS-CoV-2/”]

sanitize_metadata
* type: object
* description: Parameters to configure how to sanitize metadata to a Nextstrain-compatible format.

parse_location_field
* type: string
* description: Field in the metadata that stores GISAID-formatted location details (e.g., North America / USA / Washington) to be parsed into region, country, division, and location fields.
* default: Location

rename_fields
* type: array
* description: List of key/value pairs mapping fields in the input metadata to rename to another value in the sanitized metadata.
* default:
```yaml



	“Virus name=strain”


	“Type=type”


	“Accession ID=gisaid_epi_isl”


	“Collection date=date”


	“Additional location information=additional_location_information”


	“Sequence length=length”


	“Host=host”


	“Patient age=patient_age”


	“Gender=sex”


	“Clade=GISAID_clade”


	“Pango lineage=pango_lineage”


	“Pangolin version=pangolin_version”


	“Variant=variant”


	“AA Substitutions=aa_substitutions”


	“aaSubtitutions=aa_substitutions”


	“Submission date=date_submitted”


	“Is reference?=is_reference”


	“Is complete?=is_complete”


	“Is high coverage?=is_high_coverage”


	“Is low coverage?=is_low_coverage”


	“N-Content=n_content”


	“GC-Content=gc_content”







```

subsampling
* type: object
* description: Schemes for subsampling data prior to phylogenetic inference to avoid sampling bias or focus an analysis on specific spatial and/or temporal scales. [See the SARS-CoV-2 tutorial for more details on defining subsampling schemes](https://docs.nextstrain.org/en/latest/tutorials/SARS-CoV-2/steps/customizing-analysis.html#subsampling).

Each named subsampling scheme supports the following attributes that the workflow passes to augur filter.

group_by
* type: string
* description: Space-delimited list of metadata columns to group records by prior to subsampling to the requested or calculated number of sequences per group.
* examples:

	year month

	region year month

seq_per_group
* type: integer
* description: Number of sequences to select per group of records in groups specified by group_by. The total number of sequences selected for each subsampling rule will be no more than the number of groups times this number of sequences per group. This parameter must be used with the group_by parameter.

max_sequences
* type: integer
* description: Maximum number of sequences to select for the current subsampling rule. When used with the group_by parameter, Augur will calculate the number of sequences per group. When used without the group_by parameter, Augur will select this number of sequences at random from all available sequences. When probabilistic sampling is enabled by the sampling_scheme parameter, the total number of strains actually selected will be more or less than this value due to the underlying Poisson sampling process.

sampling_scheme
* type: string
* description: A flag to pass to augur filter that specifies whether to enable probabilistic sampling or not. Probabilistic sampling is useful when there are more groups than requested sequences.
* default: –probabilistic-sampling (Augur’s default)
* examples:

	–probabilistic-sampling

	–no-probabilistic-sampling

exclude
* type: string
* description: Argument to pass to augur filter to exclude records based on specific values in metadata columns. This argument can refer to build-specific attributes with curly bracket notation as shown in the examples below.
* examples:

	“–exclude-where ‘region!=Africa’”

	“–exclude-where ‘region!={region}’”

include
* type: string
* description: Argument to pass to augur filter to include records based on specific values in metadata columns regardless of other filters applied during subsampling (i.e., strains for which the include test evaluates to true will always be included if they exist in the metadata and sequences). This argument can refer to build-specific attributes with curly bracket notation as shown in the examples below.
* examples:

	–include-where ‘region=Africa’

	–include-where ‘region={region}’

query
* type: string
* description: Argument to pass to augur filter to select specific records by testing values in metadata columns. This argument can refer to build-specific attributes with curly bracket notation as shown in the examples below. Query values support [pandas Dataframe query syntax](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-query) treating the metadata as a data frame.
* examples:

	–query “division == ‘Washington’”

	–query “division == ‘{division}’”

	–query “(country == ‘{country}’) & (division == ‘{division}’)”

	–query “division != ‘{division}’”

exclude_ambiguous_dates_by
* type: string
* description: Level date ambiguity used to exclude strains from the analysis by augur filter –exclude-ambiguous-dates-by
* examples:

	any

	day

	month

	year

min_date
* type: string
* description: Argument to augur filter to set the minimum collection date for strains to include in the subsampling set. Dates can be numeric floating point values (e.g., 2019.74) or ISO 8601-style strings (e.g., 2019-10-01).
* examples:

	–min-date 2019-10-01

	–min-date 2019.74

max_date
* type: string
* description: Argument to augur filter to set the maximum collection date for strains to include in the subsampling set. Dates can be numeric floating point values (e.g., 2019.74) or ISO 8601-style strings (e.g., 2019-10-01).
* examples:

	–max-date 2021-04-01

	–max-date 2021.25

priorities
* type: object
* description: Parameters to prioritize strains selected for the current subsampling rule. Currently, the workflow only supports one type of priority which is proximity. The proximity-based priority requires an additional reference to the rule in the current subsampling scheme whose sequences should be used to calculate genetic proximity.
* examples:
```yaml
subsampling:



	my-scheme:
	
	my-first-rule:
	max_sequences: 10



	my-second-rule:
	max_sequences: 10
# Prioritize sequences that are genetically similar to
# sequences in the sequences selected by the
# my-first-rule rule.
priorities:


type: proximity
focus: my-first-rule















```

title
* type: string
* description: Title to provide to augur export and display as the title of the analysis in Auspice.

traits
* type: object
* description: Parameters for inference of ancestral traits by augur traits with support for default traits and build-specific traits.
* examples:
```yaml
traits:



	default:
	sampling_bias_correction: 2.5
columns: [“country_exposure”]



	washington:
	# Override default sampling bias correction for
# “washington” build and continue to use default
# trait columns.
sampling_bias_correction: 5.0








```

Each named traits configuration (default or build-named) supports the following attributes.

sampling_bias_correction
* type: float
* description: A rough estimate of how many more events would have been observed if sequences represented an even sample. [See the documentation for augur traits for more details](https://docs.nextstrain.org/projects/augur/en/stable/usage/cli/traits.html).
* default: 2.5

columns
* type: array
* description: A list of columns from the metadata for which ancestral trait values should be inferred for ancestral nodes.
* default: [“country_exposure”]

tree
* type: object
* description: Parameters for phylogenetic inference by augur tree. The tree “method” is hardcoded to iqtree.

tree-builder-args
* type: string
* description: Arguments specific to the tree method (iqtree) to be passed through to the tree builder command run by augur tree.
* default: ‘-ninit 10 -n 4’

auspice_json_prefix
* type: string
* description: Prefix to use for Auspice JSON outputs. Change this value to produce JSONs named like auspice/<your_prefix>_global.json for a build named global, for example. If you are using [Nextstrain’s Community Sharing](https://docs.nextstrain.org/en/latest/guides/share/community-builds.html) to view your builds, set this value to your GitHub repository name and the ncov default. For example, if your repository is named evolution, set auspice_json_prefix: evolution_ncov to get JSONs you can view your global build at https://nextstrain.org/community/your_github_organization/evolution/ncov/global.
* default: ncov

 # Customizing analysis
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/customizing-analysis.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

Changing parameters

You can configure most steps of [the workflow](orientation-workflow.md) by specifying values in a .yaml configuration file.
We’ve provided reasonable default values for each step in the defaults/parameters.yaml; these are the same values the Nextstrain team uses for our analyses.
For more details, [see the reference for all workflow configuration parameters](https://nextstrain.github.io/ncov/configuration).

We encourage you to take a few minutes to skim through [the default config file](defaults/parameters.yaml). Although these default values should be fine for most users, it’s helpful to get a sense for what options are available.

If you’d like to tweak the parameterization, you can override any of these values by specifying them in the `my_profiles/<name>/builds.yaml` file. Any values not overridden in this way will fall back to the default values.
Keeping build-specific parameters separate this way prevents mixups of settings between runs, and gives you a cleaner file to work with (rather than having to wrestle the _entire_ default parameterization file).

Adding custom rules

Insert your own custom Snakemake rules into the default workflow without modifying the main Snakemake files, by defining a list of custom_rules in your builds.yaml file.
Each entry in the custom_rules list should be a path to a valid Snakemake file (e.g., “my_rules.smk”).
The main workflow will detect these custom rules and include them after all other rules have been defined.

As an example, the Nextstrain team’s workflow defines custom export rules that modify the default auspice JSONs.
These rules are defined in the builds.yaml file as follows:

```yaml
custom_rules:



	workflow/snakemake_rules/export_for_nextstrain.smk







```

To modify rules for the example profile, create a new file named my_profiles/example/my_rules.smk and modify the builds.yaml file for the example profile to include the following lines:

```yaml
custom_rules:



	my_profiles/example/my_rules.smk







```

Adding a new place

Places are defined as one of:
- region (e.g., North America, Asia)
- country
- division (i.e., state, province, or canton)
- location (i.e., a county or city within a division)

To define a new place, you’ll need to specify its GPS coordinates and a color.

1. Add a line to defaults/lat_longs.tsv. This file is separated into sections for each geographic resolution. This looks like:
`
resolution place latitude longitude
location Abondant 48.790785 1.420178
`

>Note: keep in mind that 0.0 longitude is the prime meridian; to specify something in the Western hemisphere, you’ll need to enter a _negative_ value for longitude. Similarly, to specify something in the Southern hemisphere, you’ll need to enter a _negative_ value for latitude

	Add an entry to color_ordering.tsv such that your newly-defined place is next to geographically nearby places in the list.

Subsampling

Basic subsampling
Reasonable defaults are pre-defined. You can find a [description of them here](running.md).

Custom subsampling schemes
We implement hierarchical subsampling by producing multiple samples at different geographic scales and merge these samples into one file for further analysis.
A build can specify any number of such samples which can be flexibly restricted to particular meta data fields and subsampled from groups with particular properties.
When specifying subsampling in this way, we’ll first take sequences from the ‘focal’ area, and the select samples from other geographical areas.
Read further for information on how we select these samples.
Here, we’ll look at the advanced example (./my_profiles/example_advanced_customization) file to explain some of the options.

When specifying how many sequences you want in a subsampling level (for example, from a country or a region), you can do this using either seq_per_group or max_sequences - these work with the group_by argument.
For example, switzerland subsampling rules in the advanced example looks like this:
```yaml
switzerland:


# Focal samples for country
country:


group_by: “division year month”
max_sequences: 1500
exclude: “–exclude-where ‘country!={country}’”




# Contextual samples from country’s region
region:


group_by: “country year month”
seq_per_group: 20
exclude: “–exclude-where ‘country={country}’ ‘region!={region}’”
priorities:


type: “proximity”
focus: “country”







# Contextual samples from the rest of the world,
# excluding the current region to avoid resampling.
global:


group_by: “country year month”
seq_per_group: 10
exclude: “–exclude-where ‘region={region}’”
priorities:


type: “proximity”
focus: “country”










```

For country-level sampling above, we specify that we want a maximum of 1,500 sequences from the country in question (here, Switzerland).
Since we set group_by to “division year month”, all the Swiss sequences will be divided into groups by their division, month, and year of sampling, and the code will try to equally sample from each group to reach 1,500 sequences total.

Alternatively, in the region-level sampling, we set seq_per_group to 20.
This means that all the sequences from Europe (excluding Switzerland) will be divided into groups by their sampling country, month, and year (as defined by group_by), and then 20 sequences will taken from each group (if there are fewer than 20 in any given group, all of the samples from that group will be taken).

Now we’ll look at a subsampling scheme which defines a multi-canton build.
Cantons are regional divisions in Switzerland - below ‘country,’ but above ‘location’ (often city-level).
In the advanced example, we’d like to be able to specify a set of neighboring ‘cantons’ and do focal sampling there, with contextual samples from elsewhere in the country, other countries in the region, and other regions in the world.

For cantons this looks like this:
```yaml
# This build will take from 3 cantons - we have a sample rule for each,
# rather than just one division that’s focal build
lac-leman:


# focal samples
geneva:


group_by: “year month”
seq_per_group: 300
exclude: “–exclude-where ‘division!=geneva’”





	vaud:
	group_by: “year month”
seq_per_group: 300
exclude: “–exclude-where ‘division!=vaud’”



	valais:
	group_by: “year month”
seq_per_group: 300
exclude: “–exclude-where ‘division!=valais’”





# Contextual samples from the country
country:


group_by: “division year month”
seq_per_group: 20
exclude: “–exclude-where ‘country!=switzerland’”




# Contextual samples from division’s region
region:


group_by: “country year month”
seq_per_group: 10
exclude: “–exclude-where ‘region!=europe’”
priorities:


type: “proximity”
focus: “country”







# Contextual samples from the rest of the world, excluding the current
# division to avoid resampling.
global:


group_by: “country year month”
seq_per_group: 5
exclude: “–exclude-where ‘region=europe’”
priorities:


type: “proximity”
focus: “country”










```

All entries above canton level (the ‘contextual’ samples) specify priorities.
Currently, we have only implemented one type of priority called proximity.
It attempts to selected sequences as close as possible to the focal samples specified as focus: division.
The argument of the latter has to match the name of one of the other subsamples.

In addition to the exclude filter, you can also specify strains to keep by providing a query.
The query field uses augur filter’s –query argument (introduced in version 8.0.0) and supports [pandas-style logical operators](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-query).
For example, the following exclusionary filter,

`yaml
exclude: "--exclude-where 'region!={region}' 'country!={country}' 'division!={division}'"
`

can also be written as an inclusionary filter like so:

`yaml
query: --query "(region == {region}) & (country == {country}) & (division == '{division}')"
`

If you need parameters in a way that isn’t represented by the configuration file, [create a new issue in the ncov repository](https://github.com/nextstrain/ncov/issues/new) to let us know.

Ancestral trait reconstruction

Trait reconstruction is the process by which augur infers the most likely metadata value of an internal node. For example, if an internal node (which always represents a hypothesized, ancestral virus / case) has 3 descendants, all of which were isolated in Washington State, we might infer that the ancestor was most likely also circulating in Washington State (see [“Interpretation”](interpretation.md) for more).

For each build, you can specify which categorical metadata fields to use for trait reconstruction.

<!– TODO: can someone please check this section for me? the existing docs were unclear to me –>
To specify this on a per-build basis, add a block like the following to your my_profiles/<name>/builds.yaml file:
```yaml
traits:



	my_north_america_build: ### build name
	sampling_bias_correction: 2.5
columns: [“country_exposure”, “division_exposure”] ### traits to reconstruct; must match column names in metadata.tsv








```

This is particularly powerful when travel histories are available:

```yaml
exposure:



	my_north_america_build: ### build name
	trait: “division”
exposure: “division_exposure”








```

Labeling clades

We assign clade labels according to [this schema](naming_clades.md).

Because the exact topology of the tree will vary across runs, clades are defined based on their unique mutations.
These are specified in defaults/clades.tsv like so:

```tsv
# clade gene    site    alt

A1a     ORF3a   251     V
A1a     ORF1a   3606    F
```

[Previous Section: Orientation: Running & troubleshooting](running.md)
[Next Section: Orientation: Customizing your visualization](customizing-visualization.md)

 # Customizing your Auspice visualization
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/customizing-visualization.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

Just as we can specify a build-specific analysis options in the builds.yaml file, we can also specify build-specific visualization options in this directory.

Looking at the builds.yaml file, the last few lines are:
```yaml
files:


auspice_config: “my_profiles/example/my_auspice_config.json”




```

This points to a JSON file that parameterizes the output files used for visualizion with Auspice.
Let’s look at what kinds of customization options we can use this for.

Custom color schemes

If you’d like to specify a custom color scale, you can add a colors.tsv file, where each line is a tab-delimited list of a metadata column name; a metadata value; and a corresponding hex code.

The first few lines of the example file look like this:
`
country Russia #5E1D9D
country Serbia #4D22AD
country Europe #4530BB
...
`

Make sure to also add
```yaml
files:


colors: “my_profiles/<name>/colors.tsv”




```
to your builds.yaml file.

Changing the dataset description

The dataset description, which appears below the visualizations, is read from a file which is specified in builds.yaml. Per-build description can be set by specifying them in the build.

```yaml
builds:



	north-america: # name of the build; this can be anything
	description: my_profiles/example/north-america-description.md








```

If that is not provided, then a per-run description is used, also specified in builds.yaml:

```yaml
files:


description: my_profiles/example/my_description.md




```

Adding custom metadata fields to color by
1. Add a [valid metadata column](data-prep.md) to your metadata.tsv
2. Open my_profiles/<name>/auspice_config.json
3. Add an entry to the colorings block of this JSON:

```json
…
“colorings”: [



	{
	“key”: “location”,
“title”: “Location”,
“type”: “categorical”





},
{


“key”: “metadata_column_name”,
“title”: “Display name for interface”,
“type”: “categorical” or “continuous”




}




…
]
…
```

Choosing defaults
You can specify the default view in the display_defaults block of an auspice_config.json file (see above)
```json
…
“display_defaults”: {


“color_by”: “division”,
“distance_measure”: “num_date”,
“geo_resolution”: “division”,
“map_triplicate”: true,
“branch_label”: “none”





},

```

Choosing panels to display

Similarly, you can choose which panels to enable in the panels block:
```json
…
“panels”: [


“tree”,
“map”,
“entropy”






]

```

[Previous Section: Orientation: Customizing your analysis](customizing-analysis.md)
[Next Section: Options for visualizing and sharing results](sharing.md)

 # Preparing your data
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/data-prep.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

We’ve prepared an example dataset in the `data` directory. If you’d like to move ahead with this tutorial with this example dataset, you can skip this section.
If you’d like to use your own data, read on.

To use Nextstrain to analyze your own data, you’ll need to prepare two files:

	A fasta file with viral genomic sequences

	A corresponding tsv file with metadata describing each sequence

We’ve created an example dataset in the data directory. This consists of a compressed FASTA file with viral genomes sourced from Genbank (example_sequences.fasta.gz) and a corresponding TSV with metadata describing these sequences (example_metadata.tsv).

Formatting your sequence data

The first 2 lines in data/sequences.fasta look like this:
`
>Wuhan-Hu-1/2019
ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATC.....
`
The first line is the `strain` or `name` of the sequence.
Lines with names in FASTA files always start with the > character (this is not part of the name), and may not contain spaces or ()[]{}|#><.
Note that “strain” here carries no biological or functional significance and should largely be thought of as synonymous with “sample.”

The sequence itself is a [consensus genome](https://en.wikipedia.org/wiki/Consensus_sequence#:~:text=In%20molecular%20biology%20and%20bioinformatics,position%20in%20a%20sequence%20alignment.).

By default, sequences less than 27,000 bases in length or with more than 3,000 `N` (unknown) bases are omitted from the analysis.
For a basic QC and preliminary analysis of your sequence data, you can use clades.nextstrain.org.
This tool will check your sequences for excess divergence, clustered differences from the reference, and missing or ambiguous data. In addition, it will assign nextstrain clades and call mutations relative to the reference.

—

Formatting your metadata

Nextstrain accommodates many kinds of metadata, so long as it is in a TSV format.
A TSV is a text file, where each row (line) represents a sample and each column (separated by tabs) represents a field.

>If you’re unfamiliar with TSV files, don’t fret; it’s straightforward to export these directly from Excel, which we’ll cover shortly.

Here’s an example of the first few columns of the metadata for a single strain, including the header row.
(Spacing between columns here is adjusted for clarity, and only the first 6 of 23 columns are shown).
`
strain virus gisaid_epi_isl genbank_accession date region ...
NewZealand/01/2020 ncov EPI_ISL_413490 ? 2020-02-27 Oceania ...
`

In total there are 23 columns of metadata for each genome; see the last section of this page for an in-depth walkthrough.

Required metadata

A valid metadata file must include the following fields:

Field | Example value | Description | Formatting |

---	—	---	—	
`strain` or `name`	Australia/NSW01/2020	Sample name / ID	Each header in the fasta file must exactly match a strain value in the metadata. Characters ()[]{}	#>< are disallowed
`date`	`2020-02-27`, `2020-02-XX`, `2020-XX-XX`	Date of _sampling_	`YYYY-MM-DD`; ambiguities can be indicated with `XX`	
`virus`	`ncov`	Pathogen name	Needs to be consistent	
`region`	`Africa`, `Asia`, `Europe`, `North America`, `Oceania` or `South America`	Global region of _sampling_		

Please be aware that our current pipeline will filter out any genomes with an unknown date - you can change this in your own pipeline.

Missing metadata:

Missing data is to be expected for certain fields.
In general, missing data is represented by an empty string or a question mark character.
There is one important difference: if a discrete trait reconstruction (e.g. via augur traits) is to be run on this column, then a value of ? will be inferred, whereas the empty string will be treated as missing data in the output. See below for how to represent uncertainty in sample collection date.

General formatting tips:
- The _order_ of the fields doesn’t matter; but if you are going to join your metadata with the global collection then it’s easiest to keep them in the same order!
- Not all fields are currently used, but this may change in the future.
- Data is case sensitive
- The “geographic” columns, such as “region” and “country” will be used to plot the samples on the map.
Adding a new value to these columns isn’t a problem at all, but there are a few extra steps to take; see the [customization guide](customizing-analysis.md).
- You can color by any of these fields in the Auspice visualization. Which exact columns are used, and which colours are used for each value is completely customisable; see the [customization guide](customizing-visualization.md).

Formatting metadata in Excel
You can also create a TSV file in Excel.
However, due to issues with auto-formatting of certain fields in Excel (like dates), we don’t recommend this as a first option.
If you do edit a file in Excel, open it afterwards in a text-editor to check it looks as it should!
1. Create a spreadsheet where each row is a sample, and each column is a metadata field
2. Ensure your spreadsheet meets the requirements outlined above. Pay special attention to date formats; see [this guide to date formatting in Excel](https://support.microsoft.com/en-us/office/format-a-date-the-way-you-want-8e10019e-d5d8-47a1-ba95-db95123d273e?ui=en-us&rs=en-us&ad=us).
3. Click on File > Save as
4. Choose Text (Tab delimited) (*.txt) and enter a filename ending in .tsv

—
Contextualizing your data

Background / contextual sequences
Making inferences about a sample’s origin is strongly dependent on the makeup of your dataset: the model can’t infer a transmission from an origin it doesn’t have any (or enough) data from.

To address this, we strongly recommend adding contextual background sequences to your dataset. To make this easier, we provide a continually-updated dataset, pre-formatted for Nextstrain, through [GISAID](https://gisaid.org). To download this dataset:

	Register for a GISAID account if you don’t have one already and then log into GISAID’s EpiCoV database.

	Click “Downloads” to bring up a modal window.

	If you scroll down to the bottom of this modal window you should see a heading of “Genomic epidemiology” that includes entries “FASTA” and “metadata”.

	Click on “metadata” to download a compressed file of the form metadata_2021-04-08_08-30.tsv.gz. Uncompress this file and save as data/gisaid_metadata.tsv.

	Click on “FASTA” to download a compressed file of the form sequences_2021-04-08_08-30.fasta.gz. Keep this file compressed and save as data/gisaid_sequences.fasta.gz.

![gisaid_downloads](images/gisaid_downloads.png)

GISAID maintains multiple tiers of access and many users of GISAID will initially lack access to the “FASTA” and “metadata” under “Genomic epidemiology” (the entries will just be absent). If you find that these files are missing for you, you’ll need to email GISAID at hCoV-19@gisaid.org to request access to the specific “FASTA” and “metadata” files under “Genomic epidemiology”. Somewhat confusingly, there are separate “FASTA” and “metadata” entries listed under the heading “Download packages”. These files are a slightly different format and are not directly compatible with the Nextstrain ncov pipeline. Please feel free to let us know at [discussion.nextstrain.org](https://discussion.nextstrain.org/t/nextmeta-and-nextfasta-not-on-gisaid/224) if you’re having difficulties accessing these files.

The Nextstrain team uses this pipeline to include the latest sequences and metadata from GISAID in our builds: [nextstrain/ncov-ingest](https://github.com/nextstrain/ncov-ingest).

Subsampling

We’ve outlined several methods for subsampling, including builds with a focus area + genetically similar contextual sequences, in the [next section](running.md).

—

Appendix: in-depth guide to the standard Nextstrain metadata fields
Column 1: `strain`

This needs to match the name of a sequence in the FASTA file exactly and must not contain characters such as spaces, or ()[]{}|#><.
In our example we have a strain called “NewZealand/01/2020” so there should be a sequence in the FASTA file for “>NewZealand/01/2020” (sequence names in FASTA files always start with the > character, but this is not part of the name).

Note that “strain” here carries no biological or functional significance and should be thought of as synonymous with sample.

Column 2: `virus`

Name of the pathogen.

Column 3: `gisaid_epi_isl`

If this genome is shared via [GISAID](https://www.gisaid.org/) then please include the EPI ISL here. In our example this is “EPI_ISL_413490”.

Column 4: `genbank_accession`

If this genome is shared via [GenBank](https://www.ncbi.nlm.nih.gov/genbank/) then please include the accession number here. In our example this is “?” indicating that it hasn’t (yet) been deposited in GenBank. (See above for more information on how to encode missing data.)

Column 5: `date` (really important!)

This describes the sample collection data (_not_ sequencing date!) and must be formated according as YYYY-MM-DD.
Our example was collected on Feb 27, 2020 and is therefore represented as “2020-02-27”.

You can specify unknown dates or month by replacing the respected values by XX (ex: 2013-01-XX or 2011-XX-XX) and completely unknown dates can be shown with 20XX-XX-XX (which does not restrict the sequence to being in the 21st century - they could be earlier).
Please be aware that our current pipeline will filter out any genomes with an unknown date, however you can change this for your pipeline!

See [this guide](https://support.microsoft.com/en-us/office/format-a-date-the-way-you-want-8e10019e-d5d8-47a1-ba95-db95123d273e?ui=en-us&rs=en-us&ad=us) to formatting dates in Excel

Column 6: `region`

The region the sample was collected in – for our example this is “Oceania”.
Please use either “Africa”, “Asia”, “Europe”, “North America”, “Oceania” or “South America”.
If you sequence a genome from Antartica, please get in touch!

Column 7: `country`

The country the sample was collected in. Our example, “NewZealand/01/2020”, was collected in ……. New Zealand.
You can run tail +2 data/metadata.tsv | cut -f 7 | sort | uniq to see all the countries currently present in the metadata.
As of April 10, there were 64! 🌎

Column 8: `division`

Division currently doesn’t have a precise definition and we use it differently for different regions.
For instance for samples in the USA, division is the state in which the sample was collected here. For other countries, it might be a county, region, or other administrative sub-division.
To see the divisions which are currently set for your country, you can run the following command (replace “New Zealand” with your country):
`bash
tail +2 data/metadata.tsv | cut -f 7,8 | grep "^New Zealand" | cut -f 2 | sort | uniq
`

Column 9: `location`

Similarly to division, but for a smaller geographic resolution. This data is often unavailable, and missing data here is typically represented by an empty field or the same value as division is used.
In our example the division is “Auckland”, which conveniently (or confusingly) is both a province of New Zealand and a city.

Column 10: `region_exposure`

If the sample has a known travel history and infection is thought to have occured in this location, then represent this here.
In our example, which represents New Zealand’s first known case, the patient had recently arrived from Iran, thus the value here is “Asia”.
Specifying these travel histories helps inform the model we use to reconstruct the geographical movements of the virus.

If there is no travel history then set this to be the same value as region.

Column 11: `country_exposure`

Analogous to region_exposure but for country.
In our example, given the patient’s travel history, this is set to “Iran”.

Column 12: `division_exposure`

Analogous to region_exposure but for division. If we don’t know the exposure division, we may specify the value for country_exposure here as well.

Column 13: `segment`

Unused. Typically the value “genome” is set here.

Column 14: `length`

Genome length (numeric value).

Column 15: `host`

Host from which the sample was collected.
Currently we have multiple values in the dataset, including “Human”, “Canine”, “Manis javanica” and “Rhinolophus affinis”.

Column 16: `age`

Numeric age of the patient from whom the sample was collected.
We round to an integer value.
This will show up in auspice when clicking on the tip in the tree which brings up an info box.

Column 17: `sex`

Sex of the patient from whom the sample was collected.
This will show up in auspice when clicking on the tip in the tree which brings up an info box.

Column 18: `originating_lab`

Please see [GISAID](https://www.gisaid.org/help/publish-with-gisaid-references/) for more information.

Column 19: `submitting_lab`

Please see [GISAID](https://www.gisaid.org/help/publish-with-gisaid-references/) for more information.

Column 20: `authors`

Author of the genome sequence, or the paper which announced this genome.
Typically written as “LastName et al”.
In our example, this is “Storey et al”.
This will show up in auspice when clicking on the tip in the tree which brings up an info box.

Column 21: `url`

The URL, if available, pointing to the genome data.
For most SARS-CoV-2 data this is https://www.gisaid.org.

Column 22: `title`

The URL, if available, of the publication announcing these genomes.

Column 23: `date_submitted`

Date the genome was submitted to a public database (most often GISAID).
In YYYY-MM-DD format (see date for more information on this formatting).

[Previous Section: Setup and installation](setup.md)
[Next Section: Orientation: workflow](orientation-workflow.md)

 ## Data Submitter’s FAQ

We often recieve questions from data submittors about why their data is not visible on the [Nextstrain SARS-CoV-2 runs](https://nextstrain.org/ncov).
This short FAQ highlights some of the main reasons why data may not be showing up on Nextstrain.

Sequence Length & Number of N’s

We currently only use full-genome sequences which are at least 27,000 bases in length. They also cannot have more than 3,000 bases that are ‘N’.

Subsampling

Nextstrain runs can be subsampled considerably. There are over >30,000 whole-genome sequences available on GISAID currently, but we typically include <5,000 in each of our runs. If the division your samples are from contains more than about 100 samples per month, they are likely to be downsampled. Be sure to check the appropriate regional build - these are sampled more heavily from the focal region, so there’s a higher chance a sequence will be included in the run. We have regional builds for [North America](https://nextstrain.org/ncov/north-america), [South America](https://nextstrain.org/ncov/south-america), [Asia](https://nextstrain.org/ncov/asia), [Africa](https://nextstrain.org/ncov/africa/), [Europe](https://nextstrain.org/ncov/europe), and [Oceania](https://nextstrain.org/ncov/oceania).

Missing Dates

We currently only include samples that have an exact sampling date (day, month, year). This is because we cannot accurately estimate the sample dates from the sequences at the moment, given the short duration of the pandemic so far, and the mutation rate.

If your sample has only year or only month and year as a sampling date, it will be automatically excluded from runs. If you have privacy/data sharing concerns, it’s ok to slightly change the collection date randomly by +/- 1 or 2 days. Please do not use the sequencing or processing date, as these can negatively influence our runs.

If you wish to add a corrected date to your samples, simply updating the sampling date in GISAID will automatically update our system, and the sequence will be included in the next run!

Many Samples with the Same Date

If we receive many samples that have identical dates as sample dates, we may exclude these manually. This is because this often indicates that the ‘sample date’ given is not actually the sample date, but the sequencing, processing, or uploading date. We try to email submitters when we do this to check whether the dates are truly the collection dates.

If you are genuinely submitting many sequences with identical dates, you can avoid us temporarily excluding them by emailing hello@nextstrain.org to let us know about the sequences and why they have the same date (ex: collected during investigation of a long-term care center).

Missing USA State

We currently exclude samples from the USA which do not have a ‘division’ attribute (this is the USA state or territory where they were sampled). Adding a state/territory/division to your sample on GISAID will automatically update this on our system, and the sequence will appear in our next run.

Divergence Issues

For quality control, we use a combination of automated and manual checks to ensure that sequences included seem to be free of sequencing and/or assembly error. If a sequenece is deemed to be far too divergent (has more mutations than we expect given the sampling date), or far too under-diverged (has far fewer mutations than we expect given the sampling date), it may be excluded. We cannot off direct help in these cases, but suggest you revisit the raw sequence files with the aid of someone with experience using your sequencing pipeline, in order to correct any sequencing and assembly errors.

 # Developer guide

Contents

1. [Setup](#setup)
1. [Data](#data)
1. [Running](#running)
1. [Releasing new workflow versions](#releasing-new-workflow-versions)

Setup

Please see [the main Nextstrain docs](https://nextstrain.org/docs/getting-started/introduction#open-source-tools-for-the-community) for instructions for installing the Nextstrain bioinformatics pipeline (Augur) and visualization tools (Auspice).

Data

In order to run the Nextstrain build you must provision ./data/sequences.fasta and ./data/metadata.tsv.
We’ve included a test set of sequences that are publicly available via Genbank as ./example_data/sequences.fasta.

Running

Please see [these docs](./docs/running.md) for instructions on how to run this build yourself.

The resulting output JSON at auspice/ncov.json can be visualized by running auspice view –datasetDir auspice or nextstrain view auspice/ depending on local vs containerized installation.

Finalizing automated builds

To run a regional build, be sure to update the list of regions in nextstrain_profiles/nextstrain/builds.yaml.
You can run all builds in parallel with the following command.

`bash
snakemake --profile nextstrain_profiles/nextstrain all_regions
`

Or you can specify final or intermediate output files like so:

```bash
# subsampled regional focal
snakemake –profile nextstrain_profiles/nextstrain auspice/ncov_europe.json

# subsampled global
snakemake –profile nextstrain_profiles/nextstrain auspice/ncov_global.json
```

To update ordering/lat_longs after AWS download:

`bash
snakemake --touch --forceall --profile nextstrain_profiles/nextstrain
snakemake --profile nextstrain_profiles/nextstrain clean_export_regions
snakemake --profile nextstrain_profiles/nextstrain export_all_regions
`

When done adjusting lat-longs & orders, remember to run the following command to produce the final Auspice files.

`bash
snakemake --profile nextstrain_profiles/nextstrain all_regions
`

Releasing new workflow versions

We use semantic versioning of the ncov workflow, denoting backward incompatible changes with major versions.
Prior to merging a pull request that introduces a new backward incompatible change (e.g., requirement of a new version of Augur), take the following steps to document these changes:

	Determine the new version number by incrementing [the current version](https://github.com/nextstrain/ncov/releases/) (e.g., “v2” from “v1”).

	As part of the pull request, document the change(s) from the pull request in [docs/change_log.md](https://github.com/nextstrain/ncov/blob/master/docs/change_log.md) with the current date and new version number.

	Merge the pull request

	[Create a new GitHub release](https://github.com/nextstrain/ncov/releases/new) using the new version as the tag (e.g., “v2”) and release title. Leave the release description empty.

We do not release new minor versions for new features, but you should document new features in the change log as part of the corresponding pull request under a heading for the date those features are merged.

 # Glossary

Alignment

Ancestral trait (reconstruction)

Augur

Auspice

Bases

Branch

Build

Config

Division

Filtering

Genome

Genomic epidemiology

GISAID

Location

Metadata

Narrative

Node

Phylogeny

Reference genome

Region

Sample

Sequence

Snakemake

Strain

Subsampling

Tip (leaf)

TSV

Trait

Transmission

Tree

Workflow manager

 # Guidance for interpretation
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/interpretation.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

Introductory resources

	Visual explanation of how viral mutations and spread are related: https://www.nytimes.com/interactive/2020/04/30/science/coronavirus-mutations.html

	Introduction to interpreting phylogenetic trees: https://nextstrain.org/narratives/trees-background/

	How to interact with auspice (the engine for viewing trees): https://neherlab.org/201901_krisp_auspice.html

	Overview of genomic epidemiology (older, but still relevant and clear): http://evolve.zoo.ox.ac.uk/Evolve/Oliver_Pybus_files/EvolAnalysisOfDynamicsOfViruses.pdf

Case Studies

	UCSF-led analysis of genomic epi in California: https://science.sciencemag.org/content/early/2020/06/05/science.abb9263

	UK analysis of hospital-acquired infections: https://www.medrxiv.org/content/10.1101/2020.05.08.20095687v1

	UK’s analysis of coronavirus introductions: https://virological.org/t/preliminary-analysis-of-sars-cov-2-importation-establishment-of-uk-transmission-lineages/507

	Australia cluster detection: https://www.medrxiv.org/content/10.1101/2020.05.12.20099929v1

	Nextstrain situation reports: https://nextstrain.org/ncov-sit-reps/

[Previous Section: Options for visualizing and sharing results](sharing.md)
[Next Section: Writing a narrative](narratives.md)

 # Running an analysis starting from multiple inputs
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/running.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

A common use case is to have a set (or sets) of SARS-CoV-2 sequences which you wish to analyse together.
For instance, you may have a set of freshly generated genomes which you wish to analyse in the context of a larger, worldwide set of genomes such as those found on GISAID.
This tutorial works through such a scenario.

We have partitioned the data contained within the main example dataset into two sets:
1. An “Australian” dataset, containing 91 genomes from Victoria, Australia. These were genomes uploaded to NCBI from [Torsten Seemann et al.,](https://www.doherty.edu.au/people/associate-professor-torsten-seemann) but are used in this tutorial to represent a small subset of genomes which may not yet be public.
2. A “worldwide” dataset for context. Often this would be the entire NCBI/GISAID dataset, but here only includes 327 genomes for speed and data-sharing reasons.

Our aim is to produce an analysis of the 91 Australian genomes with select worldwide genomes for context. To achieve this, we wish to apply different input-dependent filtering, subsampling and colouring steps.

Overview of the files used in this tutorial

The sequences and metadata for this tutorial are in data/example_multiple_inputs.tar.xz and must be decompressed via tar xf data/example_multiple_inputs.tar.xz –directory data/.

You should now see the following starting files:
`sh
data/example_metadata_aus.tsv # Aus data (n=91) from Seemann et al.
data/example_sequences_aus.fasta
data/example_metadata_worldwide.tsv # Worldwide, contextual data (n=327)
data/example_sequences_worldwide.fasta
`

The files are small enough to be examined in a text editor – the format of the worldwide metadata is similar to the nextmeta.tsv file which you may download from GISAID, whereas the format of the Australian metadata is more limited, only containing sampling date and geographic details, which may be more realistic for a newly generated sequencing run.
Note: see data/example_metadata.tsv for the full metadata of these Australian samples, we’ve intentionally restricted this here to mimic a real-world scenario.

The build-specific configs etc are in my_profiles/example_multiple_inputs

`sh
my_profiles/example_multiple_inputs/config.yaml
my_profiles/example_multiple_inputs/builds.yaml # this is where the input files and parameters are specified
my_profiles/example_multiple_inputs/my_auspice_config.json
`

Setting up the config

You can define a single input dataset in builds.yaml as follows.

```yaml
inputs:



	name: my-data
metadata: “data/metadata.tsv”
sequences: “data/sequences.fasta”







```

For multiple inputs, you can add another entry to the inputs config list.
Here, we will give them the names “aus” and “worldwide”:

```yaml
# my_profiles/example_multiple_inputs/builds.yaml
inputs:



	name: “aus”
metadata: “data/example_metadata_aus.tsv”
sequences: “data/example_sequences_aus.fasta”


	name: “worldwide”
metadata: “data/example_metadata_worldwide.tsv”
sequences: “data/example_sequences_worldwide.fasta”







```

Snakemake terminology

Inside the Snakemake rules, we use a wildcard origin to define different starting points.
For instance, if we ask for the file results/aligned_worldwide.fasta then wildcards.origin=”worldwide” and we expect that the config has defined
a sequences input as shown above.

How is metadata combined?

The different provided metadata files (for aus and worldwide, defined above) are combined during the pipeline, and the combined metadata file includes all columns present across the different metadata files.
Looking at the individual TSVs, the worldwide metadata contains many more columns than the aus metadata does, so we can expect the the aus samples to have many empty values in the combined metadata.
In the case of conflicts, the order of the entries in the YAML matters, with the last value being used.

Finally, we use one-hot encoding to express the origin of each row of metadata.
This means that extra columns will be added for each input (e.g. aus and worldwide), with values of “yes” or “no”, representing which samples are contained in each set of sequences.
We are going to use this to our advantage, by adding a coloring to highlight the source of sequences in auspice via my_profiles/example_multiple_inputs/my_auspice_config.json:

```json
“colorings”: [



	{
	“key”: “aus”,
“title”: “Source: Australia”,
“type”: “boolean”





}




],
“display_defaults”: {


“color_by”: “aus”





}

# Input-specific filtering parameters

The first stage of the pipeline performs filtering, masking and alignment  (note that this is different to subsampling).
If we have multiple inputs, this stage of the pipeline is done independently for each input.
The parameters used for filtering steps are typically defined by the “filter” dict in the builds.yaml, with sensible defaults provided (see defaults/parameters.yaml).
For multiple inputs, we can overwrite these for each input.

As an example, in this tutorial let’s ensure we include all the aus samples, even if they may be partial genomes etc

```yaml
my_profiles/example_multiple_inputs/builds.yaml
filter:

	aus:
	min_length: 5000 # Allow shorter (partial) genomes
skip_diagnostics: True # skip diagnostics (which can remove genomes) for this input


```

# Subsampling parameters

The second stage of the pipeline subsamples the (often large) dataset.
By this stage, the multiple inputs will have been combined into a unified alignment and metadata file (see above), however we may utilise the fact that the combined metadata has additional columns to represent which samples came from which input source (the columns aus and worldwide).
This allows us to have per-input subsampling steps.

In this example, we want to produce a dataset which contains:
1. _All_ of the samples from the aus input (i.e. all of the Australian genomes)
2. A worldwide sampling which prioritises sequences close to (1)
3. A random, background worldwide sampling

```yaml
my_profiles/example_multiple_inputs/builds.yaml
builds:

	multiple-inputs:
	subsampling_scheme: custom-scheme # use a custom subsampling scheme defined below

STAGE 2: Subsampling parameters
subsampling:

	custom-scheme:
	# Use metadata key to include ALL from input1
allFromAus:

exclude: “–exclude-where ‘aus!=yes’” # subset to sequences from input aus

Proximity subsampling from worldwide input to provide context
worldwideContext:

exclude: “–exclude-where ‘aus=yes’” # i.e. subset to sequences _not_ from input aus
group_by: “year” # NOTE: augur filter needs this to use max_sequences (TODO)
max_sequences: 100
priorities:

type: “proximity”
focus: “allFromAus”

	worldwideBackground:
	exclude: “–exclude-where ‘aus=yes’”
group_by: year month
seq_per_group: 5


```

## Run the build

The following commands will run this tutorial

`sh
tar xf data/example_multiple_inputs.tar.xz --directory data/ # make sure you have input files!
snakemake --profile my_profiles/example_multiple_inputs -f auspice/ncov_multiple-inputs.json
`

The resulting JSON can be dropped onto [auspice.us](https://auspice.us) for visualization.

The following figure shows the graph (DAG) of steps which Snakemake will run to produce the target auspice JSON.
You can generate this yourself via
snakemake –profile my_profiles/example_multiple_inputs -f auspice/ncov_multiple-inputs.json –dag | dot -Tpdf > dag.pdf.

![snakemake-graph](images/multiple_inputs_dag.png)

## Extra examples

### What if I need to preprocess input files beforehand?

A common use case may be that some of your input sequences and/or metadata may require preprocessing before the pipeline even starts, which will be use-case specific.
To provide an example of this, let’s imagine the situation where we haven’t uncompressed the starting files, and our “custom preprocessing” step will be to decompress them.
In other words, our preprocessing step will replace the need to run tar xf data/example_multiple_inputs.tar.xz –directory data/.

We can achieve this by creating a snakemake rule which produces all of (or some of) the config-specified input files:

```python
my_profiles/example_multiple_inputs/rules.smk
rule make_starting_files:

	message:
	“””
Creating starting files for the multiple inputs tutorial by decompressing {input.archive}
“””

	input:
	archive = “data/example_multiple_inputs.tar.xz”

	output:
	# Note: the command doesn’t use these, but adding them here makes snakemake
aware that this rule produces them
aus_meta = “data/example_metadata_aus.tsv”,
aus_seqs = “data/example_sequences_aus.fasta”,
world_meta = “data/example_metadata_worldwide.tsv”,
world_seqs = “data/example_sequences_worldwide.fasta”

	shell:
	“””
tar xf {input.archive} –directory data/
“””


```

And then making our build aware of these custom rules:
```yaml
my_profiles/example_multiple_inputs/builds.yaml
custom_rules:

	my_profiles/example_multiple_inputs/rules.smk


```

### What about if my starting files are stored remotely?

Currently we can handle files stored on S3 buckets rather than remotely by simply declaring this as the input location:

```yaml
your pipeline’s builds.yaml config
inputs:

	name: worldwide
metadata: “s3://your_bucket_name/metadata.tsv”
sequences: “s3://your_bucket_name/sequences.fasta.xz”


```

> If your S3 bucket is private, make sure you have the following env variables set: $AWS_SECRET_ACCESS_KEY and $AWS_ACCESS_KEY_ID.

> You may use .xz or .gz compression - we automatically infer this from the filename suffix.




            

          

      

      

    

  

    
      
          
            
  ## Clade Naming & Definitions
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/naming_clades.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

The nomenclature used by Nextstrain to designate clades for SARS-CoV-2 is driven by the following objectives:


	label genetically well defined clades that have reached significant frequency and geographic spread,


	allow for transient clade designations that are elevated to major clades if they persist and rise in frequency,


	provide memorable but informative names,


	gracefully handle clade naming in the upcoming years as SARS-CoV-2 becomes a seasonal virus.




### Major clades

#### Definition

We name a new major clade when it reaches a frequency of 20% globally at any time point. When calculating these frequencies, care has to be taken to achieve approximately even sampling of sequences in time and space since sequencing effort varies strongly between countries. A clade name consists of the year it emerged and the next available letter in the alphabet. A new clade should be at least 2 mutations away from its parent major clade.

#### Naming

We name major clades by the year they are estimated to have emerged and a letter, e.g. 19A, 19B, 20A. The yearly reset of letters will ensure that we don’t progress too far into the alphabet, while the year-prefix provides immediate context on the origin of the clade that will become increasingly important going forward. These are meant as major genetic groupings and not intended to completely resolve genetic diversity.

The hierarchical structure of clades is sometimes of interest. Here, the “derivation” of a major clade can be labeled with the familiar “.” notation as in 19A.20A.20C for the major clade 20C.

### Subclades

Within these major clades, we subclades, which we will label by their parent clade and the nucleotide mutation(s) that defines them (ex: 19A/28688C). It should be noted however, that these mutations are only meaningful in that they define the clade. Once a subclade reaches (soft) criteria on frequency, spread, and genetic distinctiveness, it will be renamed to a major clade (hypothetically 19A/28688C to 20D).

### Current Clades


Clade | Primary Countries | Mutations | Max Frequency |

— | — | — | — |

19A | Asia:  China/Thailand | Root clade | 65-47% Globally in Jan |

19B | Asia:  China | C8782T T28144C | 28-33% Globally in Jan |

20A | N America/Europe/Asia:  USA, Belgium, India | C14408T A23403G | 41-46% Globally Apr-May |

20B | Europe:  UK, Belgium, Sweden | G28881A G28882A G28883C | 19-20% Globally Mar-Apr |

20C | N America:  USA | C1059T G25563T | 19-21% Globally Apr |



You can view the current clades on the Global SARS-CoV-2 Nextstrain tree [here](https://nextstrain.org/ncov/global?branchLabel=clade&c=clade_membership).

### Identifying Nextstrain Clades

To make it easy for users to identify the Nextstrain clade of their own sequences, we provide a clade assigment tool at [clades.nextstrain.org](https://clades.nextstrain.org/).
In addition to assigning clades, this tool will call mutations in your sequences relative to the reference and performs some basic QC.

You can also use the [simple python script](https://github.com/nextstrain/ncov/blob/master/assign_clades.py) to assign appropriate clades to sequences in a fasta file.
This script is part of the ‘ncov’ github repository, but does not require running any other part of the pipeline. However ‘augur’ must be installed to run the script. This can be done [a number of different ways](https://nextstrain.org/docs/getting-started/local-installation#install-augur-with-python), but is often most easily done [using ‘pip’](https://nextstrain-augur.readthedocs.io/en/stable/installation/installation.html#using-pip-from-pypi).

Note when running this script you can supply –sequences if your sequences require aligning first. If you already have aligned your sequences to the ncov repository reference (for example, from running the repository), you can supply –alignment. If you supply sequences that are not aligned to the ncov reference, you may get bad results!



            

          

      

      

    

  

    
      
          
            
  # Nextstrain Narratives
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/narratives.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

Nextstrain Narratives allow you to pair a specific view of a dataset with text and images to generate scrollable, interactive reports.

For examples, [see our weekly Situation Reports](https://nextstrain.org/ncov-sit-reps) from the first several months of the pandemic.

You can [read more about Narratives here](https://nextstrain.org/docs/narratives/introduction).
We’ve also [provided a template narrative file](https://github.com/nextstrain/ncov/tree/master/narratives/template_narrative.md) for you to edit.
You can preview the template narrative by navigating to [https://nextstrain.org/community/narratives/nextstrain/ncov/template_narrative](https://nextstrain.org/community/narratives/nextstrain/ncov/template_narrative).

We’ll add more to this page soon; in the meantime, if you get stuck, don’t hesitate to [ask for help](README.md#Help)! :)

## [Previous Section: Interpreting your results](interpretation.md)



            

          

      

      

    

  

    
      
          
            
  # Overview of this repository (i.e., what do these files do?)
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/orientation-files.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

The files in this repository fall into one of these categories:
* Input files
* Output files and directories
* Workflow configuration files we might want to customize
* Workflow configuration files we don’t need to touch
* Documentation

We’ll walk through all of the files one by one, but here are the most important ones for your reference:

|Category| Directory | File | Description | Configuration|
|-----|—–|-----|——|-----|
|Input file|`./data/`|`sequences.fasta`|**Genomic sequences; IDs must match `strain` column in `metadata.tsv`**| See [‘Preparing your data’](data-prep.md)
Input file	`./data/`	`metadata.tsv`	**Tab-delimited description of strain (i.e., sample) attributes**	See ['Preparing your data'](data-prep.md)
Output file	`./auspice/`	`buildName.json`	**Output file for visualization in auspice**	
Customizable workflow file	`./my_profiles/<mybuildname>/`	`builds.yaml`	**Define and parameterize all the builds you'd like to run**	See our [customization guide](customizing-analysis.md)



## Input files


Directory | File | Description | Configuration|



|-----|—–|-----|——|
|`./data/`|`sequences.fasta`|**Genomic sequences; IDs must match `strain` column in `metadata.tsv`**| See [‘Preparing your data’](data-prep.md)
`./data/`	`metadata.tsv`	**Tab-delimited description of strain (i.e., sample) attributes**	See ['Preparing your data'](data-prep.md)
`./defaults/`	`include.txt`	List of strain names to _include_ during subsampling and filtering	One strain name per line
`./defaults/`	`exclude.txt`	List of strain names to _exclude_ during subsampling and filtering	One strain name per line

## Output files and directories


Directory | File | Description |



-----	—–	-----
`./auspice/`	`buildName.json`	**Output file for visualization in auspice**
`./results/`	`aligned.fasta`, `sequence-disagnostics.tsv`, etc.	Raw results files (dependencies) that are shared across all `builds`
`./results/<buildName>/`	`tree.nwk`, `aa_mutations.json`, etc.	Raw results files (dependencies) that are specific to a single `build`
`./logs/`	`.log` files	Error messages and other information about the run

## Workflow configuration files we might want to customize


Directory | File | Description | Configuration |



-----	—–	-----	—-	
`./my_profiles/<mybuildname>/builds.yaml`	**Define and configure all the builds you'd like to run**	See our [customization guide](customizing-analysis.md)		
`./my_profiles/<mybuildname>/config.yaml`	**Workflow configuration file; set the number of cores, etc.**	See our [customization guide](customizing-analysis.md)		
`./defaults/`	`parameters.yaml`	**Default analysis configuration file**	Override these settings in `./my_profiles/.../builds.yaml`	
`./defaults/`	`auspice_config.json`	**Default visualization configuration file**	Override these settings in `./my_profiles/.../auspice_config.yaml`	See our [customization guide](customizing-visualization.md)

## Workflow configuration files we don’t need to touch


Directory | File | Description | Configuration|



-----	—–	-----	—–
`./`	`Snakefile`	Entry point for `snakemake` commands; validates input.	No modification needed
`./workflow/snakemake_rules/`	`main_workflow.smk`	Defines rules for running each step in the analysis	Modify your `builds.yaml` file, rather than hardcode changes into the snakemake file itself
`./workflow/envs/`	`nextstrain.yaml`	Specifies computing environment needed to run workflow with the `--use-conda` flag	No modification needed
`./workflow/schemas/`	`config.schema.yaml`	Defines format (e.g., required fields and types) for  `config.yaml` files.	Useful reference, but no modification needed.
`./scripts/`	add_priorities_to_meta.py, etc.	Helper scripts for common tasks	No modification needed

## [Previous Section: Orientation: analysis workflow](orientation-workflow.md)
## [Next Section: Orientation: Running & troubleshooting](running.md)



            

          

      

      

    

  

    
      
          
            
  # Orientation: so, what does Nextstrain do?
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/orientation-workflow.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

Nextstrain has two main parts:
* Augur performs the bioinformatic analyses required to produce a tree, map, and other inferences from your input data.
* The outputs of augur form the input for Auspice, which provides the visualizations you see on Nextstrain.org

You can find more information about how these tools fit together [here](https://nextstrain.org/docs/getting-started/introduction). We’ll come back to Auspice when we get to the [visualization](sharing.md) section.

First, let’s take a look at how augur works.

## How bioinformatic analyses are managed

At its core, augur is a collection of Python scripts, each of which handles one step in the bioinformatic analyses necessary for visualization with auspice.

As you might imagine, keeping track of the input and output files from each step individually can get very confusing, very quickly.
So, to manage all of these steps, we use a workflow manager called snakemake.

> _Note: there are many other workflow managers out there, such as nextflow. While we fully encourage you to use whichever workflow tools you prefer, we only provide support and maintenance for snakemake._

Snakemake is an incredibly powerful workflow manager with many complex features. For our purposes, though, we only need to understand a few things:


	Each step in a workflow is called a “rule.” The inputs, outputs, and shell commands for each step/rule are defined in a .smk file.


	Each rule has a number of parameters, which are specified in a `.yaml` file.


	Each rule produces output (called a “dependency”) which may be used as input to other rules.




## Overview of a Nextstrain “build” (analysis workflow)
Below is an illustration of each step in a standard Nextstrain analysis workflow.
Dependencies (output files from one step that act as input to the next) are indicated by grey arrows. Input files which must be provided are indicated with red outlines. As you can see in yellow, the final output is a JSON file for visualization in auspice.

Required input files (e.g. the sequence data generated in the [data preparation section](data-prep.md), or other files which are part of this repo) are indicated with red outlines. We’ll walk through each of these in detail in the next section.

![snakemake_workflow](images/basic_snakemake_build.png)

We encourage you to take a look at [main_workflow.smk](https://github.com/nextstrain/ncov/blob/master/workflow/snakemake_rules/main_workflow.smk) to see what each rule is doing in more detail.

>Note: Not all of the rules included are essential, or may even be desirable for your analysis. Your build may be able to be made a lot simpler, depending on your goals.

### What’s a “build?”

The components in this diagram constitute a Nextstrain “build” – i.e., a set of commands, parameters and input files which work together to reproducibly execute bioinformatic analyses and generate a JSON for visualization with auspice. You can learn more about builds [here](https://nextstrain.org/docs/bioinformatics/what-is-a-build).

Builds are particularly important if you frequently want to run several different analysis workflows or datasets. For example, if you wanted to run one analysis on just your data and another analysis that incorporates background / contextual sequences, you could configure two different _builds_ (one for each of these workflows). We’ll cover this in more detail in the [basic build configuration](running.md) section.

## [Previous Section: Preparing your data](data-prep.md)
## [Next Section: Orientation: which files should I touch?](orientation-files.md)



            

          

      

      

    

  

    
      
          
            
  # Running the analysis
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/running.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

>This section focuses on how to running the basic example build to give you a chance to practice and get a sense of how things work. The next section covers customizing and configuring your own build.

To run our analyses, we need to:
1. Ensure our sequence data and metadata is [properly formatted](data-prep.md)
2. Specify which builds you want to generate using a builds.yaml file
3. Execute the workflow
4. [Hopefully you don’t have to] troubleshoot

## Step 1. Gather and format your data

If you haven’t done this step yet, check out our [data prep](data-prep.md) guide and come back when you’re ready.

## Step 2. Specify which builds to run

In the orientation section, we learned that
- [Nextstrain analyses are run using a workflow manager called Snakemake](orientation-workflow.md)
- [A “build”](glossary.md#Build) is a bundle of input files, parameters, and commands
- [Each build is primarily configured by your builds.yaml file](orientation-files.md): builds.yaml and config.yaml

Let’s start with defining a build in ./my_profiles/example/builds.yaml.
We use the `builds.yaml` file to define what geographic areas of the world we want to focus on. Each block in this file will produce a separate output JSON for visualization.

The first block of the provided ./my_profiles/example/builds.yaml file looks like this:

```
builds:

Focus on King County (location) in Washington State (division) in the USA (country)
with a build name that will produce the following URL fragment on Nextstrain/auspice:
/ncov/north-america/usa/washington/king-county
north-america_usa_washington_king-county: # name of the build; this can be anything

subsampling_scheme: location # what subsampling method to use (see parameters.yaml)
region: North America
country: USA
division: Washington
location: King County
Whatever your lowest geographic area is (here, ‘location’ since we are doing a county in the USA)
list ‘up’ from here the geographic area that location is in.
Here, King County is in Washington state, is in USA, is in North America.


```

Looking at this example, we can see that each build has a:


	build_name, which is used for naming output files


	subsampling_scheme, which specifies how sequences are selected. Default schemes exist for region, country, and division. Custom schemes [can be defined](customizing-analysis.md).


	region, country, division, location: specify geographic attributes of the sample used for subsampling




The rest of the builds defined in this file serve as examples for division-, country- or region-focused analyses.
To adapt this for your own analyses:


1. copy my_profiles/example to my_profiles/<my-new-name>
1. open and modify the builds.yaml file in this directory to include your geographic area(s) of interest and remove any builds that are not relevant to your work
1. open and modify the config.yaml file in this directory such that it references:



	the path to your new custom builds.yaml instead of the example builds file


	the path to your own sequences and metadata instead of the example data










## Step 3: Run the workflow

To actually execute the workflow, run:

`bash
ncov$ snakemake --profile my_profiles/example -p
`

–profile tells snakemake where to find your builds.yaml and config.yaml files.
-p tells snakemake to print each command it runs to help you understand what it’s doing.

If you’d like to run a dryrun, try running with the -np flag, which will execute a dryrun. This prints out each command, but doesn’t execute it.

Note that the example profile runs the workflow with at most two cores at once, as defined by the cores parameter in my_profiles/example/config.yaml.
Snakemake requires you to specify how many cores to use at once.
To define the number of cores to use from the command line, run Snakemake as follows.

`bash
ncov$ snakemake --cores 1 --profile my_profiles/example -p
`

## Step 4: Troubleshoot common issues

If you have a question which is not addressed here, please don’t hestitate to [ask for help](index.md#Help)

#### My country / division does not show up on the map

This is most often a result of the country / division not being present in [the file defining the latitude & longitude of each deme](../defaults/lat_longs.tsv).
Adding it to that file (and rerunning the Snakemake rules downstream of this) should fix this.

#### My trait (e.g. division) is grey instead of colored

We generate the colors from the colors rule in the Snakefile, which uses the [ordering TSV](./defaults/ordering.tsv) to generate these. See [‘customizing your analysis’](customizing-analysis.md) for more info.

_*A note about locations and colors:*_
Unless you want to specifically override the colors generated, it’s usually easier to _add_ information to the default ncov files, so that you can benefit from all the information already in those files.

#### My genomes aren’t included in the analysis

There are a few steps where sequences can be removed:


	
	During the filter step:
	
	Samples which are included in [the exclude file](../defaults/exclude.tsv) are removed


	
	Samples which fail the current filtering criteria, as defined in the parameters.yaml file, are removed. You can modify the snakefile as desired, but currently these are:
	
	Minimum sequence length of 25kb


	No ambiguity in (sample collection) date










	Samples may be randomly removed during subsampling; see [‘customizing your analysis’](customizing-analysis.md) for more info.









	During the refine step, where samples that deviate more than 4 interquartile ranges from the root-to-tip vs time are removed








#### Error: Where there’s SAMPLING_TRAIT we should always have EXPOSURE_TRAIT

This comes from an incomplete metadata file.
If you define (e.g.) country for a sample then you _must_ also define country_exposure for that sample.
If there is no (known) travel history, then you can set the same values for each.

#### Sequencing and alignment errors

Genome sequencing, bioinformatic processing of the raw data, and alignment of the sequences are all steps were errors can slip in.
Such errors can distort the phylogenetic analysis.
To avoid sequences with known problems to mess up the analysis, we keep a list of problematic sequences in config/exclude.txt and filter them out.
To facilitate spotting such problematic sequences, we added an additional quality control step that produces the files



	results/sequence-diagnostics.tsv


	results/flagged-sequences.tsv


	results/to-exclude.txt







These files are the output of scripts/diagnostics.py and are produced by rule diagnostic.
The first file contains statistics for every sequence in the aligment, sorted by divergence worst highest to lowest.
The second file contains only those sequences with diagnostics exceeding thresholds each with their specific reason for flagging – these are sorted by submission date (newest to oldest).
The third file contains only the names of the flagged sequences and mirrors the format of config/exclude.txt.
These names could be added to config/exclude.txt for permanent exclusion.
Note, however, that some sequences might look problematic due to alignment issues rather than intrinsic problems with the sequence.
The flagged sequences will be excluded from the current run.

To only run the sequence diagnostic, you can specify any of the three above files as target or run:
`bash
snakemake --profile my_profiles/<name> diagnostic
`

In addition, we provide rules to re-examine the sequences in config/exclude.txt.
By running
`bash
snakemake --profile my_profiles/<name> diagnose_excluded
`
the pipeline will produce



	results/excluded-sequence-diagnostics.tsv


	results/excluded-flagged-sequences.tsv


	results/check-exclusion.txt







These files are meant to facilitate checking whether sequences in config/exclude.txt are excluded for valid reasons.

## [Previous Section: Orientation: which files should I touch?](orientation-files.md)
## [Next Section: Orientation: Customizing your analysis](customizing-analysis.md)



            

          

      

      

    

  

    
      
          
            
  # Setup and installation
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/setup.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

The following steps will prepare you to run complete analyses of SARS-CoV-2 data by installing required software and running a simple example workflow.

## 1. Make a copy of this tutorial

There are two ways to do this:



	[Recommended] If you’re familiar with git, clone this repository either via the web interface, a GUI such as [GitKraken](https://www.gitkraken.com/), or the command line:







`bash
git clone https://github.com/nextstrain/ncov.git
`



	[Alternative] If you’re not familiar with git, you can also download a copy of these files via the buttons on the left.







## 2. Setup your Nextstrain environment

Create a Nextstrain conda environment with augur and auspice installed.
If you do not have conda installed already, [see our full installation instructions for more details](https://nextstrain.org/docs/getting-started/local-installation).
If you are running Windows, [see our documentation about setting up the Windows Subsystem for Linux (WSL)](https://nextstrain.org/docs/getting-started/windows-help).

`bash
curl http://data.nextstrain.org/nextstrain.yml --compressed -o nextstrain.yml
conda env create -f nextstrain.yml
conda activate nextstrain
npm install --global auspice
`

## 3. Run a basic analysis with example data

Run a basic workflow with example data, to confirm that your Nextstrain environment is properly configured.
First, change into the ncov repository’s directory.

`bash
cd ncov
`

Then, uncompress the example sequence data we include in the repository.

`bash
gzip -d -c data/example_sequences.fasta.gz > data/example_sequences.fasta
`

Finally, run the basic workflow with these example data.

`bash
snakemake --cores 4 --profile ./my_profiles/getting_started
`

The getting_started profile produces a minimal global phylogeny for visualization in auspice.
This workflow should complete in about 5 minutes on a MacBook Pro (2.7 GHz Intel Core i5) with four cores.

## 4. Visualize the phylogeny for example data

Go to [http://auspice.us](http://auspice.us) in your browser.
Drag and drop the JSON file auspice/ncov_global.json anywhere on the [http://auspice.us](http://auspice.us) landing page, to visualize the resulting phylogeny.

## Advanced reading: considerations for keeping a ‘Location Build’ up-to-date

_Note: we’ll walk through what each of the referenced files does shortly_

### Keeping data updated
If you are aiming to create a public health build for a state, division, or area of interest, you likely want to keep your analysis up-to-date easily.
If your run contains contextual subsampling (sequences from outside of your focal area), you should first ensure that you [regularly download the latest sequences as input](data-prep.md), then re-run the build.
This way, you always have a build that reflects the most recent SARS-CoV-2 information.

### Keeping your workflow updated
You should also aim to keep this ncov repository updated.
If you’ve clone the repository from Github, this is done by running git pull.
This downloads any changes that we have made to the repository to your own computer.
In particular, we add [new colors and latitute & longitude information](customizing-analysis.md) regularly - these should match the new sequences you download, so that you don’t need to add this information yourself.

If you don’t need to share the contents of [my_profiles](orientation-files.md) (the files that parameterize your specific analysis) with anyone, then you can leave this in the ./my_profiles/ folder.
It won’t be changed when you git pull for the latest information.

However, if you want to share your profile, you’ll need to adopt one of the following solutions.
First, you can ‘fork’ the entire ncov repository, which means you have your own copy of the repository.
You can then add your profile files to the repository and anyone else can download them as part of your ‘fork’ of the repository.
Note that if you do this, you should ensure you pull regularly from the original ncov repository to keep it up-to-date.

Alternatively, you can create a new, separate repository to hold your my_profiles files, outside of the ncov repository.
You can then share this repository with others, and it’s straightforward to keep ncov up to date, as you don’t change it at all.
If doing this, it can be easiest to create a my_profiles folder and imitate the structure found in the ./my_profiles folder , but this isn’t required.
Note that to run the build you’ll need still run the snakemake command from within the ncov repository, but specify that the build you want is outside that folder.

For the [south-usa-sarscov2](https://github.com/emmahodcroft/south-usa-sarscov2/) example, you can see the south-central build set up in a profiles folder.
To run this, one would call the following from within ncov:

`bash
snakemake --cores 1 --profile ../south-usa-sarscov2/profiles/south-central/
`

## [Next Section: Preparing your data](data-prep.md)



            

          

      

      

    

  

    
      
          
            
  # Visualizing and sharing results
<!– WARNING –>
<!– Do not edit this file from within the docs.nextstrain.org repository. –>
<!– It is fetched from another repository to be included in the docs.nextstrain.org build. –>
<!– So, if you edit it after it is fetched into docs.nextstrain.org, your changes will be lost. –>
<!– Instead, edit this file in its own repository and commit your changes there. –>
<!– For more details on this (temporary) implementation, see https://github.com/nextstrain/docs.nextstrain.org#fetching-of-documents-from-other-repositories –>
<!– This file is fetched from: https://github.com/nextstrain/ncov/blob/master/docs/sharing.md –>
<!– WARNING –>
<!– WARNING –>
<!– WARNING –>

[Nextstrain.org](https://www.nextstrain.org/ncov) uses Auspice to visualize JSON files that are created by Augur. While this is the most visible example, there are many other ways to use Auspice to visualize your results.

We’ll walk through each of these in detail, roughly in order from the simplest and most private to the slightly more complex and publicly shareable.

If none of these options meet your needs, please [get in touch](https://discussion.nextstrain.org/)!

—

## First: a note on sensitive or private metadata

Below, we describe the privacy considerations for each of the available options.

One approach to handling sensitive metadata is to simply keep it entirely separate.
With _any_ of these options, you can also choose to drag-and-drop a separate TSV file onto the Auspice visualization.

Doing so will enable you to color by any of the values in this extra metadata file, but none of that data ever leaves your local computer.

#### How to view visualize private metadata
1. Create a TSV file with a strain or name column that matches all the samples in your dataset
2. Add your sensitive metadata to the remaining columns
3. On your computer, drag and drop the file onto the browser window where Auspice is visualizing your JSON

_For more help formatting this metadata file, including how to do so using Excel, [see this page](data-prep.md)_

—

## Option 1: Drag-and-drop web-based visualization


	Quickstart: Drag-and-drop the file from ./auspice/sarscov2_global.json onto the page at [https://auspice.us](https://auspice.us).


	Advantages: Quick, no-setup viewing of results, including sensitive data.


	Limitations: Requires separate management of JSON file sharing and version control. Sharing a specific view via a URL isn’t possible with this method.




#### How to view
1. Navigate to [https://auspice.us](https://auspice.us)
2. Drag the output JSON file from ./auspice/<buildname>.json onto the page
3. [Optional] drag and drop a TSV with additional or private metadata onto the page (see above)

#### How to share
Share the JSON file and instructions directly.

#### Privacy and security

When your browser connects to auspice.us, it downloads from the server a version of the Auspice code which runs solely on your computer, within your browser. Then, when you drag a file onto the page, that code processes the data in your browser and displays it to you without ever sending it back to the auspice.us server. All the heavy bioinformatics computations were already performed and stored in the file you provide, which is what lets everything work quickly just on your computer.

## Option 2: Nextstrain community pages
* Example: [CZBiohub’s California COVID Tracker](https://nextstrain.org/community/czbiohub/covidtracker/ca)
* Advantages: Fully featured, plug-and-play visualization of any JSON file hosted on Github.
* Limitations: Only available for publicly viewable JSON files in public repositories.

#### How to get started

Quickstart:
1. Put your JSON in a github repository like so: myGithubOrganization/myRepository/auspice/<myBuildName>.json
2. Navigate to https://nextstrain.org/community/myGithubOrganization/myRepository/myBuildName
3. [Optional] Drag and drop a TSV with additional or private metadata onto the page (see above)

Check out our [full guide to community pages here](https://nextstrain.org/docs/contributing/community-builds).

#### Privacy and security
Community builds are visible to anyone with the URL.

## Option 3: Local viewing on your computer with Auspice


	Quickstart: ncov$ auspice view


	Advantages: Offline, entirely local viewing of results, including sensitive data.


	Limitations: Requires collaborators to install Auspice locally. Requires separate management of JSON file sharing and version control. Sharing a specific view via a URL isn’t possible with this method.




#### How to view


	Follow the instructions [here](https://nextstrain.github.io/auspice/introduction/install) to install Auspice on your computer.


	Make sure the JSON you’d like to visualize is in ./auspice/<mybuildname>.json; alternatively, pass the –datasetDir flag to specify another directory.


	Run auspice view and select the build of interest.


	[Optional] drag and drop a TSV with additional or private metadata onto the page (see above)




#### How to share
Share the JSON file and instructions directly.

#### Privacy and security
When running locally, both the server and the client run on your computer; no internet connection is requried. No data ever leaves your local machine.

## Option 4: Sharing with Nextstrain Groups


	Example: [https://nextstrain.org/groups/blab/](https://nextstrain.org/groups/blab/)


	Advantages: Web-based viewing of results with full authentication / login controls; accommodates both public and private datasets. Sharing a specific view via URL is possible with this method.


	Limitations: Setup is slightly more involved, but we’re ready to help!




#### How to get started

Nextstrain Groups are a new feature; if you’d like to use this option, please [get in touch](mailto:hello@nextstrain.org) and we’ll help you get started right away!

#### Privacy and security

With Nextstrain Groups, you can choose whether each dataset is publicly viewable or private to only other users in your group. Data is hosted in an AWS S3 bucket under your control, and is not shared with the Nextstrain team or anyone else.

## Option 5: Deploying your own Auspice server
* Advantages: Fully-featured Auspice instance, natively hosted on your own domain.
* Limitations: More technically involved, especially if user authentication is required.

#### How to get started
[See our guide here](https://nextstrain.github.io/auspice/server/introduction)

#### Privacy and security
Independently hosted Auspice servers can be configured with any security protocols necessary.

## [Previous Section: Orientation: Customizing your visualization](customizing-visualization.md)
## [Next Section: Interpreting your results](interpretation.md)



            

          

      

      

    

  

    
      
          
            
  ## Translating Nextstrain Situation Reports

We welcome translations of the situation reports (narratives) into languages other than English (in particular to languages commonly spoken in areas affected by the outbreak). We’re incredibly grateful for and impressed by the contributions provided already!

### Getting started


	Check to see if the situation report is already available in your language on [the Nextstrain homepage](https://nextstrain.org). If the date is the same for the English version and the version in your language, then it’s already up to date! :)


	Find your language* on the [translation project board](https://github.com/nextstrain/ncov/projects/1), and comment on the issue so we know you’re working on it.


	Follow the instructions in the issue to submit your translation.


	When you’re done, please remember to move the issue to the “ready for review” column [in the project board](https://github.com/nextstrain/ncov/projects/1). This helps us keep everything moving smoothly.


	When your translation has been reviewed and approved by a second translator, we’ll publish it and put it on the Nextstrain homepage!




### *If your language isn’t listed on the project board

We’d love to add even more languages! [Please open an issue here](https://github.com/nextstrain/ncov/issues/new?assignees=cassiawag&labels=&template=translation–community-request-.md&title=%5BLanguage+translation+request%5D [https://github.com/nextstrain/ncov/issues/new?assignees=cassiawag&labels=&template=translation--community-request-.md&title=%5BLanguage+translation+request%5D]); we’ll get back to you right away!



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





